Introduction to Dynamical Systems

Solutions Problem Set 8

Exercise 1. Show that the map \mathcal{L} from Lemma 4.3 in Lecture 8 preserves Hölder continuity as follows: there is $\alpha_* > 0$ such that for all $\alpha \in (0, \alpha_*]$, we have that (here $x, y \in \mathbb{R}^n$) if

$$[g]_{\alpha} := \sup_{x \neq y} \frac{|g(x) - g(y)|}{|x - y|} < \infty,$$

then

$$[\mathcal{L}^{-1}g]_{\alpha} \leq C[g]_{\alpha}.$$

Hint: take advantage of the explicit formulae for v_{\pm} in the proof of the lemma.

Solution. Consider the explicit formula for v_+ given by

$$v_{+} = \sum_{j \geq 0} A_{+}^{j} g_{+} \circ \psi^{-j},$$

and notice that therefore, by naming $L_{\psi^{-1}}$ the Lipschitz constant of ψ^{-1} , we have

$$\frac{|v_{+}(x) - v_{+}(y)|}{|x - y|^{\alpha}} \leq \sum_{j \geq 0} \frac{\left| A_{+}^{j} \left(g_{+}(\psi^{-j}(x)) - g_{+}(\psi^{-j}(y)) \right) \right|}{|x - y|^{\alpha}} \\
\leq \sum_{j \geq 0} \|A_{+}^{j}\| [g]_{\alpha} \frac{\left| \psi^{-j}(x) - \psi^{-j}(y) \right|}{|x - y|^{\alpha}} \leq [g]_{\alpha} \sum_{j \geq 0} \|A_{+}^{j}\| L_{\psi^{-1}}^{\alpha j}.$$

Now, $||A_+^j|| = (||A_+^j||^{1/j})^j$, which behaves like $\rho_{A_+}^j$ (the spectral radius of A_+) for large j. Since $\rho_{A_+} < 1$, we may let α be small enough such that $||A_+^j||^{1/j} L_{\psi^{-1}}^{\alpha} < 1$ for large j, meaning that the above is a geometric series.

By replicating this argument for v_{-} , we conclude that

$$[\mathcal{L}^{-1}g]_{\alpha} \leq [v_{+}]_{\alpha} + [v_{-}]_{\alpha} \leq C[g]_{\alpha}$$

Exercise 2. Show that the function h effecting the conjugation in Proposition 4.2 is Hölder continuous (for a sufficiently small Hölder exponent).

Solution. We begin by denoting

$$T(\hat{h}) = L^{-1}(\hat{\psi} - \hat{\phi} \circ h).$$

Then, Proposition 4.2 establishes that

$$\lim_{j \to \infty} T^j(0) = \hat{h}_*$$

is the fixed point in the L^{∞} -topology. It suffices to show that there is a uniform constant D such that

$$|T^{j}(0)(x) - T^{j}(0)(y)| \le D|x - y|^{\alpha}, \quad \forall j \ge 1.$$

for a small enough $\alpha > 0$. Then we have (with $h_j = T^j(0)$)

$$|\hat{h}_*(x) - \hat{h}_*(y)| = \lim_{j \to \infty} |h_j(x) - h_j(y)| \le D \cdot |x - y|^{\alpha}.$$

To show the uniform Holder continuity for the h_j , we argue by induction. This bound is true for $h_1(0) = L^{-1}(\hat{\psi} - \hat{\phi}(0))$. For $|x - y| \ge 1$ use the boundedness of the function. Now assume it holds true for some $j \ge 1$. Then for $\alpha > 0$ small enough, **Exercise 1** guarantees that

$$[T(\hat{h})(x) - T(\hat{h}(y))]_{\alpha} \lesssim [\hat{\psi} - \hat{\phi} \circ h]_{\alpha},$$

and therefore we can estimate

$$[\hat{\psi}]_{\alpha} \leq \sup_{x \neq y, |x-y| \leq 1} \frac{|\hat{\psi}(x) - \hat{\psi}(y)|}{|x-y|^{\alpha}} + 2\|\hat{\psi}\|_{L^{\infty}} \leq D_{1}.$$

We also get

$$[\hat{\phi} \circ h]_{\alpha} \le \|\hat{\phi}\|_{C^{0,1}} \cdot [x+h]_{\alpha} + 2\|\hat{\phi}\|_{L^{\infty}} \le \epsilon \cdot [h]_{\alpha} + D_2,$$

where the term D_2 accounts for the situation when $|x-y| \ge 1$. It follows that if $[\hat{h}]_{\alpha} \le D$, then we have

$$[T(\hat{h})]_{\alpha} \leq D_1 + \epsilon \cdot [h]_{\alpha} + D_2 \leq D_1 + D_2 + \epsilon \cdot D \leq D$$

provided that $D = D(D_1, 2, \epsilon)$ is large enough. We conclude by induction that $T^j(0)$ satisfies uniform Holder bounds, which then gives the conclusion after taking the limit.